
Use of High Performance Computing in
Agent-Based Social Simulation: A Case Study on

Trust-Based Coalition Formation

Luciano M. Rosset, Luis G. Nardin and Jaime S. Sichman
Laboratório de Técnicas Inteligentes – EP/USP

Av. Prof. Luciano Gualberto, 158 – trav. 3
05508-970 – São Paulo – SP – Brasil

{luciano.rosset,luis.nardin}@usp.br, jaime.sichman@poli.usp.br

Abstract—Computer models based on agents have shown to
be very useful in the field of social simulation, especially for its
versatility and ease to model complex systems. In the context of
agent simulations, Nardin and Sichman developed a model for
the study of coalition formation among agents, based on trust.
Later, the need of more efficient ways for simulating the model
was acknowledged in order to explore large-scale scenarios. The
solution found was the adoption of a high performance agent-
based computing platform. This article intends to explore the
use of such platform on the Nardin and Sichman’s model by
migrating its code to the Repast HPC tool, which is executed on
the Blue Gene/P supercomputer.

I. INTRODUCTION

In the last decades, computer simulation has proved to be
a viable approach for science, in addition to the traditional
deductive and inductive approaches [1]. According to Banks
[2], computer simulation consists on the reproduction of real
systems through computer models, making the study of these
systems’ dynamics possible without interfering on them. The
application of this approach to the study of social science prob-
lems enables the reproduction of social systems behaviours
through the use of computational methods, which is called
social simulation.

Adequate modelling of social systems is essential for
obtaining a useful simulation. Among the available mod-
elling paradigms, agent-based modelling has many adequate
abstractions for representing such systems: the main one is
the agent abstraction. A comprehensive definition proposed
by Ferber [3] states that an agent is a physical or virtual
entity who (a) is capable of acting in an environment; (b)
is capable of communicating with the others; (c) is driven
by a set of tendencies (individual goals to achieve or a
satisfaction utility to optimize); (d) has its own resources; (e) is
capable of perceiving the environment (limited perception); (f)
has (eventually) a partial representation of this environment;
(g) has competences and offers services; (h) may eventually
reproduce itself; and (i) tends to behave in order to satisfy its
goals using the available resources and competences and taking
into consideration its internal perceptions, representations and
the received communication.

According to Davidsson [4], the intersection between social
simulation and agent-based computing brings forth a new area
denoted Agent-Based Social Simulation (ABSS), whose main

purpose is to provide models and tools for simulating social
phenomena.

In the context of ABSS, Nardin and Sichman proposed an
agent-based simulation model, named Trust and Coalition (or
simply T&C), that integrates the notions of coalition formation
and trust in order to enable the analysis of the impacts of trust
on the formation of partnerships among autonomous agents
[5]. This model was implemented using NetLogo [6], which
is an educational agent modelling and simulating environment.
Based on this implementation, several experiments were car-
ried out identifying that the use of trust is relevant for the
formation of partnership in fully heterogeneous scenarios in
which the agents have high levels of trust intolerance and
volatility [7].

Although these simulations were successfully performed
and provided data for analyses concerning the correlation
between trust and coalition formation, there is an uncertainty
about the influences that different environment features, such
as scale and topology, may cause on such correlation. Thus, in
order to analyse such influences, the execution of simulations
considering larger populations, such as millions of individuals,
is required. However, since the T&C model execution is highly
computational demanding, simulations comprising a larger
agent population would require an unmanageable amount of
time for execution using conventional Agent-Based Modelling
and Simulation (ABMS) tools, e.g. NetLogo. For instance, it
takes about 1 hour to run a simulation considering 2,500 agents
in an Intel i5 2.5 GHz and 4 GB RAM.

High Performance Computing (HPC) is a good path to
follow in order to fulfil the needs of large-scale simulations
[8]. Therefore, in a first step towards an analyses of the T&C
model in a large-scale environment, we decided to migrate
its previous NetLogo implementation to Repast for High
Performance Computing (Repast HPC) [9], and this article
aims to present some details of such implementation.

The remainder of the article is organized as follows. In
section II, we briefly present Repast HPC and its main features,
as well as the motivation for selecting this tool. An overview
of the Trust and Coalition simulation model is presented
in Section III and its implementation using Repast HPC is
described in Section IV. Since this is a ongoing work, we
describe in Section V some of our intended future work.



II. REPAST HPC

Some ABSS models demand great computational capa-
bilities and consume an unmanageable amount of time and
memory when simulated monolithically, i.e., the model’s sim-
ulation is performed using a single process. The single process
has not only strict processing restrictions, but may also be
overwhelmed by memory needs. In order to overcome the
monolithic approach limitations and decrease the simulation
execution time, some approaches were proposed. Among these
different approaches, the most common ones are (i) parallel
computing in which one computer composed of several pro-
cessors execute the simulation in parallel, and (ii) distributed
computing in which several different computers connected
via a network process the simulation in parallel [10]. The
former is known to be the fastest option as it has a reduced
communication overhead, but no software tool capable of
executing agent models based on this approach is available.
Based on the distributed approach, several software tools were
proposed lately, such as SWAGES [11], FLAME [12] and
Repast HPC [9].

Among these tools, we chose to use Repast HPC in this
work because it is the one that presents the greatest advan-
tages concerning flexibility and general use, due to its easy
structure based on contexts and projections [9]. Moreover, it
handles transparently all required inter-process communication
and synchronizes agents status in different processes, when
needed, in order to optimize cross-process information sharing.
Additionally, Repast HPC is the only available, tested and
supported platform that runs in a Blue Gene/P supercomputer,
which is the target machine for performing our large-scale
experiments.

Repast HPC is a cross-platform C++ based environment
for large-scale ABMS. It was developed to run large-scale
agent models which complexity or number would overwhelm
a single process. Its focus is on enabling distributed runs over
multiple processes that communicate and share agents using
Message Passing Interface (MPI). Each individual process
is responsible for executing the behaviours of a subset of
all agents in the simulation. Therefore, each process has a
scheduler, a context and the projections associated with the
context. Repast HPC core components are:

• AgentId – A number that uniquely identifies an agent
in the simulation. It is composed of the agent’s identity
number, process rank and type. The identity number
is a number unique in a specific process rank. The
process rank is the process number the agent is
associated to, being unique for each process. The type
is a number that specifies a class of agents, with the
same behaviour.

• Context – It is a simple container that groups agents
of the same type together; the developer accesses the
agents properties through the context.

• Projection – It imposes a structure in which the
agents are organized. The structure defines relation-
ships among the agents using the semantics of a
projection. Three projections are provided: network,
which consists of a set of nodes and links between
them, defining a graph; grid, where topological in-
formation is included, and agents may occupy a one,

two or three-dimensional matrix, that eventually may
be wrapped (a 2D wrapped grid works as a torus);
and continuous space, which basically is a grid which
coordinates are floating-points.

• Scheduler – It allows agents to schedule events and
avoids processes beginning new tasks before other
processes end their current ones, which guarantees a
consistent simulation execution.

• Data Collection – It gathers agents information and
write them into files/structures. It allows to pro-
duce output files, composed of aggregated or non-
aggregated data from all simulation processes.

All simulations in Repast HPC are managed by a set of
controllers, one per process, which manages all components
such as Contexts, Projections, Data Collections and Scheduler.
In the beginning of the simulation, each controller creates
agents, assigns to each one an AgentId and associates them
with a Context. Projections are then created and associated
to the Context for further positioning of the agents. After
this initial setup, the controllers create several events, which
trigger actions execution. The sequence of the organization
and execution of the events is performed by the Scheduler.
These events generation and actions execution are performed
in steps named ticks and the simulation runs until a predefined
condition is met or a specified number of ticks is reached.
Besides executing the agents behaviours, Repast HPC may
also gather useful information during the simulation, through
its Data Collection feature, writing them into output files.

III. TRUST AND COALITION MODEL

The simulation model used in this work is the Trust and
Coalition (T&C) proposed by Nardin and Sichman [5]. The
simulation model proposes a spatial Prisoner Dilemma (PD)
game that integrates the notions of coalition formation and
trust, which purpose is to enable the analyses of the impacts
of trust on the formation of partnerships through coalitions.

The simulation model is composed of an environment rep-
resented by a grid and a group of agents, each of them located
at one position of the grid. It runs iteratively for a specified
number of cycles. At each cycle, each agent interacts with its
neighbours (von Neumann or Moore neighbourhood) playing
a 2-players PD game, with the following payoff matrix values:
Temptation=5, Reward=3, Punishment=1, and Sucker=0.

At each cycle, each agent is in either one of the possible
states: independent, coalition leader, or coalition member.
When independent, the agent is not associated to any coalition
and chooses between cooperating or not with its neighbours
based on its own strategy. A strategy is randomly assigned
to the agent at the beginning of the simulation, and there are
3 different possible strategies: Tit-For-Tat (TFT), Probabilistic
Tit-For-Tat (pTFT), or Random. When the agent is a coalition
leader or a coalition member, it always cooperates with the
neighbours of the same coalition and does not with other
neighbours, representing its commitment to the group and its
trust on its leader.

Based on the agent’s state, its payoff is calculated differ-
ently. The independent agent payoff is the sum of all the pay-
offs obtained by playing the PD game against its neighbours.



The coalition leader agent payoff is a tax calculated over the
sum of all its coalition members payoffs. The coalition member
payoff is defined as follows: (i) the sum of all the coalition
members payoff is calculated, (ii) the value paid as tax to the
coalition leader is subtracted from this value, and (iii) each
coalition member receives the even division of this remaining
value by the number of coalition members.

After the payoff is calculated, each agent can change its
state. The independent agent decides to associate to a coalition
if its payoff is the smallest amongst all its neighbours. In
this case, the agent associates with the coalition with greatest
payoff. If both agents are independent, then a new coalition
is formed and the agent with the greatest payoff becomes the
coalition leader and the other the coalition member. On the
other hand, the coalition member remains or leaves a coalition
based on a trust value in its coalition leader. If its payoff
is not the greatest amongst its neighbours, it decreases the
trust in the coalition leader, otherwise it increases it. When
the trust value decreases to a value below a trust threshold,
then the agent leaves the coalition and becomes independent,
otherwise it remains in the coalition. The coalition leader
becomes independent only when its coalition disppears.

IV. IMPLEMENTATION

As the T&C model has only one Type of agent, our Repast
HPC model uses a single Context to hold nxxny agents. A
two-dimensional grid Projection is created, and each agent is
located in one cell of grid. The grid is then divided into mx by
my processes (nx and ny must be respectively multiple of mx

and my). Since the agents positioned in the border of the grid
require to interact with agents running on other processes, there
is a component handled by Repast HPC, called buffer, that
synchronizes this exchange of data. Therefore, each controller
accounts for nx/mx ∗ ny/my agents (grid cells, in fact) plus
2(nx/mx + ny/my) + 4 ∗ 2(size(buffer)−1) agents taking into
account the buffered ones.

The sequence of methods execution divides the events
into smaller ones, corresponding for agent’s decisions, payoff
calculation and coalition management, each of them scheduled
to run simultaneously by all processes.

The only limitation we found in Repast HPC was the
data collection feature, which does not allow gathering data
independently from individual agents, but only by process.
Therefore, we will use HDF51, since it allows data collection
of individual agents similarly to what was done in [8].

V. FUTURE WORK

Since this is an ongoing project, we are still migrating the
model to Repast HPC and no results are currently available.
At the moment, we have performed some preliminary tests
using Repast HPC and migrated part of the simulation model.
However, as soon the migration is completed, we shall perform
some further analyses considering:

• larger populations – This study has a social approach
and one very important point to tackle is the effect of

1http://www.hdfgroup.org/HDF5/

different population sizes. HPC allows us to study the
behaviour of populations with the size of entire cities;

• different topologies – We want to analyse the effect of
narrower rectangular grids, wrapped grids (torus) and
other neighbourhoods;

• more detailed parameter sweep – Earlier NetLogo
simulations were made with a very large variation of
the parameters. One example is the tax paid by coali-
tion members that ranged from 0% to 100% varying
by 25%. HPC will allow swifter simulations, therefore
making it possible to perform a larger number of
simulations.

ACKNOWLEDGEMENTS

Luciano M. Rosset and Jaime S. Sichman are partially
supported by CNPq/Brazil. We would like to acknowledge
the computing time provided on the Blue Gene/P supercom-
puter supported by the Research Computing Support Group
(Rice University) and Laboratório de Computação Cientı́fica
Avançada (LCCA-CCE, Universidade de São Paulo).

REFERENCES

[1] R. Axelrod, “Advancing the art of simulation in the social sciences,”
Complexity, vol. 3, no. 2, pp. 16–22, 1997.

[2] J. Banks, Ed., Handbook of Simulation : Principles, Methodology,
Advances, Applications, and Practice. New York: John Wiley & Sons,
1998.

[3] J. Ferber, Les Systèmes Multi-Agents: Vers une Intelligence Collective,
ser. Informatique, Intelligence Artificielle. Paris: InterEditions, 1995.

[4] P. Davidsson, “Agent based social simulation: A computer science
view,” Journal of Artificial Societies & Social Simulation, vol. 5, no. 1,
p. 7, 2002. [Online]. Available: http://jasss.soc.surrey.ac.uk/5/1/7.html

[5] L. G. Nardin and J. S. Sichman, “Simulating the impact of trust
in coalition formation: A preliminary analysis,” Advances in Social
Simulation, Post-Proceedings of the Brazilian Workshop on Social
Simulation, pp. 33–40, 2011.

[6] U. Wilensky, NetLogo, Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, 1999. [Online].
Available: http://ccl.northwestern.edu/netlogo/

[7] L. G. Nardin and J. S. Sichman, “Trust-based coalition formation: A
multiagent-based simulation,” in Proceedings of the 4th World Congress
on Social Simulation, Taipei, TW, 2012.

[8] J. T. Murphy, “Computational social science and high performance
computing: A case study of a simple model at large scales,” in
Proceedings of the 2011 Computational Social Science Society of
America Annual Conference, Santa Fe, 2011. [Online]. Available: http:
//computationalsocialscience.org/conferences/17-2/csssa-2011-papers

[9] N. Collier and M. North, “Parallel agent-based simulation with repast
for high performance computing,” SIMULATION:Transactions of the
Society for Modeling and Simulation International, pp. 1–21, 2012.

[10] R. M. Fujimoto, Parallel and Distributed Simulation Systems, 1st ed.,
ser. Wiley series on parallel and distributed computing. New York:
John Wiley & Sons, 2000.

[11] M. Scheutz, P. Schermerhorn, R. Connaughaton, and A. Dingler,
“SWAGES: an extendable distributed experimentation system for large-
scale agent-based ALife simulations,” in Proceedings of the 10th
International Conference on the Simulation and Synthesis of Living
Systems, 2006.

[12] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough, “Exploitation of high performance computing in the
FLAME agent-based simulation framework,” in High Performance
Computing and Communication 2012 IEEE 9th International Confer-
ence on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, 2012, pp. 538–545.


